New data format in WMO

TSUBOI Kentaro

Information and Communications Technology Division Information Infrastructure Department Japan Meteorological Agency

GISC Tokyo/Japan Meteorological Agency

Topics

Meteorological data exchanged in the WMO community is defined as WMO data standards in the Manual on Codes

- NetCDF has been discussed by Task Team on CF-NetCDF (TT-CFNetCDF)
- Two specific data profiles for NetCDF will be included in the Manual on Codes I.4 as FM301-XX and FM302-XX (draft)
- The Manual on Codes Volume I.3, 'Representations derived from data models' has been revised since 2015
- The new version of IWXXM was published on 15 November 2021

What is NetCDF?

NetCDF (Network Common Data Form) is a set of software libraries and machine-independent data formats that support the creation, access, and sharing of array-oriented scientific data.

The Unidata Program Center supports and maintains netCDF programming interfaces for C, C++, Java, and Fortran. Programming interfaces are also available for Python, IDL, MATLAB, R, Ruby, and Perl.

Unidata is part of the University Corporation for Atmospheric Research (UCAR) Community Programs (UCP). **Unidata** is funded primarily by the National Science Foundation. (https://www.unidata.ucar.edu/software/netcdf/)

Features of NetCDF

- Self-Describing. A netCDF file includes information about the data it contains.
- **Portable.** A netCDF file can be accessed by computers with different ways of storing integers, characters, and floating-point numbers.
- Scalable. Small subsets of large datasets in various formats may be accessed efficiently through netCDF interfaces, even from remote servers.
- **Appendable.** Data may be appended to a properly structured netCDF file without copying the dataset or redefining its structure.
- **Sharable.** One writer and multiple readers may simultaneously access the same netCDF file.
- Archivable. Access to all earlier forms of netCDF data will be supported by current and future versions of the software.

4

NetCDF Data Model

- A netCDF dataset contains dimensions, variables, and attributes, which all have both a name and an ID number by which they are identified.
- These components can be used together to capture the meaning of data and relations among data fields in an array-oriented dataset.

Dimensions : A dimension may be used to represent a real physical dimension, for example, time, latitude, longitude, or height. A netCDF dimension has both a name and a length.

Variables : Variables are used to store the bulk of the data in a netCDF dataset. A variable represents an array of values of the same type. A variable has a name, a data type, and a shape described by its list of dimensions specified when the variable is created.

Attributes : NetCDF attributes are used to store data about the data (ancillary data or metadata). Most attributes provide information about a specific variable. These are identified by the name (or ID) of that variable, together with the name of the attribute.

Network Common Data Form Language (CDL)

CDL is a human-readable text representation of netCDF data.

NetCDF Utilities

- The **ncdump** utility generates a text representation of a specified netCDF file on standard output.
- The text representation is in a form called CDL that can be viewed, edited, or serve as input to ncgen, a companion program that can generate a binary netCDF file from a CDL file.
- Hence ncgen and ncdump can be used as inverses to transform the data representation between binary and text representations.

Ν	e	t(D	F

Example

CDL syntax

•3 sections:

- dimensions: names and lengths
- variables: types, names, shapes, and attributes
- data: variable data

•";" terminates CDL statements

•"//" starts comments

Variables associated with attributes using ":"
Attribute types may be indicated implicitly
Data order: last variable index varies fastest (row order)

```
netcdf mslp { // example for workshop
dimensions:
          lat = 6;
          lon = 4;
          time = UNLIMITED ; // currently 2
variables:
          float lat(lat);
                      lat:units = "degrees north";
          float lon(lon);
                      lon:units = "degrees east";
    double time(time) ;
        time:units = "seconds since 2009-01-01";
          float pr(time, lat, lon);
        pr:standard name = "air pressure at sea level";
                      pr:units = "hPa";
  :title="example for workshop";
data:
lat = 25, 30, 35, 40, 45, 50 ;
lon = -125, -110, -95, -80;
time = 7776000, 15552000 ;
pr =
900.5, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911,
 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923,
972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983,
 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995;
```


ogical Agency

CF Conventions

The Climate and Forecast Conventions for netCDF (**CF Conventions**) define a minimum set of metadata required to ensure that conforming netCDF files meet a basic level of self-description and interoperability. The required (minimal) set of metadata ensures that all variables in a dataset have "an associated description of what it represents, including physical units if appropriate, and that each value can be located in space (relative to earth-based coordinates) and time". Additional metadata are defined by the **CF Conventions** but are only recommended where they may not be needed or appropriate for all datasets.

A number of groups have defined their own additional conventions and styles for netCDF data. Descriptions of these conventions, as well as examples incorporating them can be accessed from the netCDF Conventions site,

https://www.unidata.ucar.edu/software/netcdf/conventions.html.

WMO-CF Extensions

The **WMO-CF extensions** build on the **CF Conventions** to provide the framework for standardizing semantics and metadata, further reducing the effort involved in specifying data products and increasing interoperability.

The WMO-CF:

- 1. Define additional metadata requirements or recommendations that are not defined by the **CF Conventions**;
- 2. Specify the set of optional **CF Conventions** metadata that this extension requires, making those optional metadata mandatory.

WMO-CF Profiles

The **WMO-CF profiles** implement the **WMO-CF extensions** for different data types by, *inter alia*: defining the standardized metadata and semantics; specifying the names of dimension and coordinate variables; and specifying the ordering of dimensions.

The **WMO-CF Profiles** reduce the degrees of freedom available when creating netCDF files, increasing the standardization of data from different publishers for the same type of data.

FM SYSTEM OF WMO-CF PROFILES

FM 301-XX WMO-CF	Reports from operational weather radar
Radial	
FM 302-XX	Profile for the representation of meteorological / oceanographic observations along a trajectory within the ocean (or other body of water) or at / near the ocean surface.
WMO-CF Marine Trajectory	Example observing platforms include, inter alia: crewed vessels making observations at the sea surface along a track; autonomous surface vehicles making similar measurements; and oceanographic gliders making measurements along a track.

WMO Drafts

WMO CF-Extensions 10 March 2021, version 0.1

DEFINITIONS

CF Conventions: The Climate and Forecast Conventions for netCDF (CF Conventions; e.g. Eaton et al., 2020) define a minimum set of metadata required to ensure that conforming netCDF files meet a basic level of self-description and interoperability. The required (minimal) set of metadata ensures that all variables in a dataset have "an associated description of what it represents, including physical units if appropriate, and that each value can be located in space (relative to earth-based coordinates) and time". Additional metadata are defined by the CF Conventions but are only recommended where they may not be needed or appropriate for all datasets

WMO-CF Extensions: The WMO-CF extensions build on the CF Conventions to provide the framework for standardizing semantics and metadata, further reducing the effort involved in specifying data products and increasing interoperability. The WMO-CF:

- 1. Define additional metadata requirements or recommendations that are not defined by the CF Conventions;
- 2. Specify the set of optional CF Conventions metadata that this extension requires, making those optional metadata mandatory.

WMO-CF Profiles: The WMO-CF profiles implement the WMO-CF extensions for different data types by, inter alia: defining the standardized metadata and semantics; specifying the names of dimension and coordinate variables; and specifying the ordering of dimensions. The WMO-CF Profiles reduce the degrees of freedom available when creating netCDF files, increasing the standardization of data from different publishers for the same type of data.

FM System of Numbering WMO-CF Extensions and Profiles

Each WMO-CF profile or extension bears a number (X), preceded by the letters FM. This number is followed by the year (Y) and month (m) of operational implementation in the form FM X-Y-M

Furthermore, an indicator term is used to designate the WMO-CF profile colloquially and is therefore called a "code name"

Notes on nomenclature

To follow

FM SYSTEM OF WMO-CF PROFILES

WMO CF-Extensions 10 March 2021, version 0.1

FM 301-XX WMO-CF RADIAL

- 1. Scope
 - a. This profile is for the representation of weather radar and lidar data in the native instrument-centric polar coordinates. Such data is the primary output of the radar/lidar signal processor known as "Level 2" data. This is the lowest level output commonly available from operational instruments and is well suited to data exchange
 - b. The structure of this profile conforms to the WMO Information and Data Models for Radial Radar and Lidar Data. Effort has also been made to maximize compatibility with the CfRadial 2 format from which this profile has been derived
- 2. Overview a. Level 2 radar/lidar data may be conceptualized as a simple hierarchy of data objects where each object contains a collection of objects from the level below. These objects are:
 - Volume The top-level object for the profile. A Volume is a collection of i logically associated sweeps. Typically, these sweeps will represent a continuous or near-continuous series of observations acquired by the instrument during a single cycle of the scan schedule.
 - ii. Sweep Represents a subset of the data in the volume over which certain fundamental conditions remain constant. A common example is for a sweep to contain the data observed during a single 360-degree scan at a fixed elevation angle.
 - iii. Ray Represents a collection of data along a single direction of pointing from the instrument.
 - iv. Range Bin Represents a collection of data within a ray that are related to the same short window of range along the beam propagation path.
 - v. Dataset A measured or calculated quantity that is associated with a range bin. Each Dataset will typically represent one of the measured radar moments such as reflectivity or Doppler velocity, but may also be used to
 - store derived information such as quality control metrics.
 - b. Within a Sweep all Range Bins contain the same collection of Datasets, and all Rays contain the same collection of Range Bins. This allows the lower three levels of the hierarchy to be collapsed into a collection of 2D variables. Each variable stores a single Dataset, with dimensions for Ray and Range Bin. c. To facilitate the hierarchical nature of the data to be represented, NetCDF groups
 - are used. The global scope is used to store the Volume object, a group is used for each Sweep object, and a variable within each Sweep group is used for each Dataset. Coordinate variables and ancillary variables within the Sweep groups provide metadata related to the Ray and Range Bin objects.

3. Global scope / root group

WMO CF-Extensions 10 March 2021, version 0.1

FM 302-XX WMO-CF MARINE TRAJECTORY

- Scope

 This profile is intended for the reporting of meteorological and/or oceanographic observations along one or more trajectories, including both at or near the ocean
 the trajectory may follow an

 undulating profile
 - A ragged array representation is used to allow multiple trajectories to be reported (e.g. see CF v1.8 conventions). This may be either a contiguous or indexed ragged array
 - c. Only data for a single platform shall be included in the file.
 - d. Groups are not supported in this profile and groups other than the root group shall
- not be used. 2. Global scope / root group
 - a. Global attributes
 - i. The regulations defined in section 6 for global attributes shall apply. ii. Table 1 lists the values to be used for the indicate attributes.
 - b. Station / platform identifier
 - i. For platforms where a WIGOS station identifier has been assigned the
 - identifier shall be included in the file using the wmo_wsi global attribute. ii. For platforms without a WIGOS station identifier the traditional WMO
 - identifier shall be reported using the umo_id global attribute.
 - c. Dimensions
 - i. Files containing marine profile trajectory data shall have the following dimensions:
 - 1 one the one dimension shall be used to indicate the total number
 - of observations within the file.
 - 2. trajectory, the trajectory dimension shall be used to indicate the number of trajectories contained in the file and to index the
 - observations to a trajectory. When there is a single trajectory in the file this shall have dimension 1

d Coordinate Variables

- Table 2 lists the coordinate variables that shall used with this profile.
- ii. For platforms located at the sea surface the depth shall be given as zero. iii. The observation locations relative to the sea surface shall then be given by
- the sensor installation height
 - (/<measurand_short_name>_<n>_sensor_installed_height) variable See 2.g.iv.
- e. Trajectory identification

https://community.wmo.int/activity-areas/wis/wmo-cf-extensions

JMA Workshop on the WIS implementation 2022

XML

The Manual on Codes Volume I.3, 'Representations derived from data models'

- Volume I.3 was published in 2015, which included only IWXXM and related schemas (FM 201 – 205)
- The latest version includes FM 221 TSML-XML, FM 231 WMLTS, FM232 WaterML2 and FM241 WMDR

IWXXM : ICAO Meteorological Information Exchange Model
TSML : Time Series Model Language
WMLTS : Water Model Language Time Series
WaterML2 : Water Model Language 2.0
WMDR : WIGOS Metadata Data Representation

XML

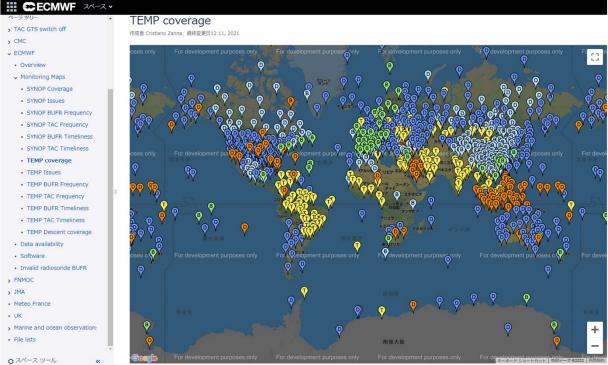
XML Schema Name	FM System	Note			
	FM 201-15 Ext.	Collection of reports that uses the same XML application schemes			
COLLECT-XML	FM 201-16	Collection of reports that uses the same XML application schemas			
METCE-XML	FM 202-15 Ext.	Foundation Meteorological Information. Modèle pour l'échange des informations sur le temps, le climat et l'eau (Model for the Exchange of Information on Weather, Climate and Water).			
	FM 202-16				
OPM-XML	FM 203-15 Ext.	Observable Property Model.			
SAF-XML	FM 204-15 Ext.	Simple Aeronautical Features.			
	FM 205-15 Ext.	ICAO Meteorological Information Exchange Model. (IWXXM 1.1)			
IWXXM-XML	FM 205-16	IWXXM 2.1			
	FM 205-2018	IWXXM 3.0			
	FM 205-2021-2	IWXXM 2021-2			
TSML-XML	FM 221-16	Representation of information as time series.			
WMLTS-XML	FM 231-16	Hydrological Time Series			
WMLRGS-XML	FM 232-16	Ratings, Gaugings and Sections.			
	FM 232-2020	WaterML 2 Groundwater.			
WMDR-XML	FM 241-16	WMO Integrated Global Observing System (WIGOS) metadata representation.			

IWXXM

- IWXXM became the ICAO standard in November 2020
- The new version of IWXXM (IWXXM-2021-2) was published on 15 November 2021
- WAFS Significant Weather Forecast was included
- The IWXXM versioning was changed to address the requirements of amendments to the ICAO Annex 3
- ICAO has a plan to remove the TAC format from the ICAO Annex 3 between 2025-2030

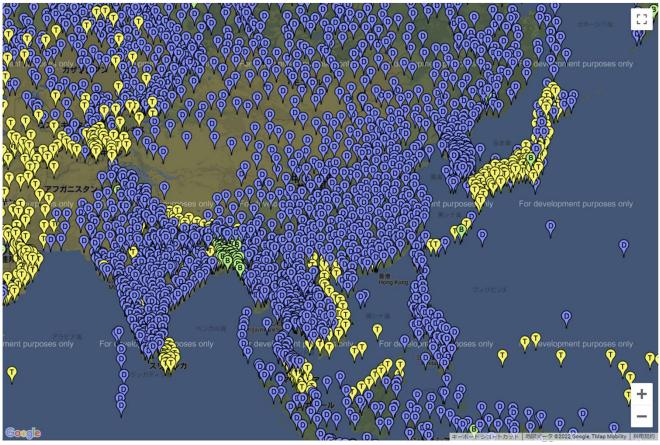
ICAO Annex 3 Amendments	IWXXM Version	METAR and SPECI	TAF	SIGMET	AIRMET	Tropical Cyclone Advisory	Volcanic Ash Advisory	Space Weather Advisory	WAFS SIGWX Forecast
Amendment 78	3.0.0	3.0.0	3.0.0	3.0.0	3.0.0	3.0.0	3.0.0	3.0.0	n/a
Amendment 79	2021-2	3.1.0	3.0.1	4.0.0	3.1.0	3.1.0	3.1.0	3.0.1	1.0.0

GISC Tokyo/Japan Meteorological Agency


Other Topics

- Migration to Table-Driven Code Forms (TAC to BUFR)
- WIGOS Station Identifier (WSI) in BUFR

Monitoring by NWP centres


Example: ECMWF Monitoring (TAC to BUFR Migration)

https://confluence.ecmwf.int/display/TCBUF/Monitoring+Maps

JMA Workshop on the WIS implementation 2022

SYNOP Coverage

JMA Workshop on the WIS implementation 2022

TEMP Coverage

JMA Workshop on the WIS implementation 2022

BUFR & TAC Status

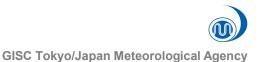
As of 14 January 2022

Country	CCCC	WMO Headings	Data Tura	
Country		TAC	BUFR	Data Type
Thailand		CSTH01		CLIMAT
		SITH20,21,40-43	ISIC20,21,40-43	SYNOP (Intermidiate)
	VTBB	SMTH01,02,40-43	ISMC01,02,40-43	SYNOP (Main)
mananu	VIDD	UGTH20,UHTH01,UPTH01,UQTH20	IUJC01,03	PILOT
		UETH01,UKTH01,USTH01,ULTH01	IUSC01-04	TEMP
		SDTH20		RADOB
		CSPH01	ISCC01	CLIMAT
	RPMM	SMPH01,20	ISMC01,20	SYNOP (Main)
		SIPH20,21	ISIC20	SYNOP (Intermidiate)
Philippines		UEPH01,UKPH01,ULPH01,USPH01	IUSC01-04	TEMP
		UGPH20,UHPH01,UPPH01,UQPH20		PILOT
		SMVX01		SHIP
		SDPH20		RADOB
		CSVS01		CLIMAT
		SIVS20,21,40	ISIC20,21,40	SYNOP (Intermidiate)
Vietnam	VNNN	SMVS01,02,40	ISMC01,02,40	SYNOP (Main)
		UGVS01,UPVS01,	IUJC01	PILOT
		UEVS01,UKVS01,ULVS01,USVS01	IUSC01	TEMP
		20		

JMA Workshop on the WIS implementation 2022

BUFR & TAC Status

As of 14 January 2022


Country	CCCC	WMO Headings	Data Tura	
Country CCCC		TAC	BUFR	Data Type
		CSBM01		CLIMAT
		SIBM20,40	ISIC20,40	SYNOP (Intermidiate)
Myanmar	VBRR	SMBM20,40	ISMC01,40	SYNOP (Main)
		UEBM01,UKBM01,ULBM01,USBM01		ТЕМР
		UGBM20,UHBM01,UPBM01,UQBM01		PILOT
Cambodia	VDPP	SMKP01	ISMC01	SYNOP
		CSLA01		CLIMAT
Lao PDR	VLIV	SILA20	ISIC20	SYNOP (Intermidiate)
		SMLA01	ISMC01	SYNOP (Main)
		CSBW01	ISCC01	CLIMAT
	VODO	SIBW20,40	ISIC20,40	SYNOP (Intermidiate)
Pangladaah		SMBW01,40	ISMC01,40	SYNOP (Main)
Bangladesh	VGDC	UEBW01,UKBW01,ULBW01,USBW01	IUSC01	ТЕМР
		UGBW20,UHBW01,UPBW01,UQBW01		PILOT
		SDBW20		RADOB
		21		·

JMA Workshop on the WIS implementation 2022

- Some countries which completed the MTDCF stopped TAC formats
- Using BUFR for all processes in your country is highly encouraged
- For the problem management for upper-air BUFR reports, GISC Tokyo will update the status of the WMO ticket system (If you have any updates, please let us know)

For the MTDCF, tools of ECMWF are very useful: <u>https://confluence.ecmwf.int/display/ECC/What+is+ecCodes</u> <u>https://confluence.ecmwf.int/display/ECC/BUFR+tools</u> <u>https://apps.ecmwf.int/codes/bufr/validator/</u>

- The sequence for reporting WSI (3 01 150) should be placed before the BUFR/CREX templates or other BUFR/CREX sequences in BUFR/CREX messages
- WIGO Station Identifier consists of 4 parts

(WIGOS Identifier Series)-(Issuer of Identifier)-(Issue Number)-(Local Identifier)

WIGOS Identifier Series	Issuer of Identifier	Issue Number	Local Identifier
(number)	(number)	(number)	(characters)

e.g. 0-20000-0-47662 Tokyo

WIGOS Station Identifier (WSI)

Block (content type)	1 st block (number)	2 nd block (number)	3 rd block (number)	4 th block (character)	
Description/ WIGOS Identifier Name Series		Issuer of Issue num		Local Identifier	
Features Allows future expansion		Allows to distinguish between identifiers issued by different organizations	Allows sub-delegation	Allocated to station	
Range	0	065534	065534	16 characters	
Example 1	0	20000	0	06700	
Example 2	0	124	0	73033	

https://community.wmo.int/wigos-station-identifier

24

JMA Workshop on the WIS implementation 2022

WIGOS Identifier defined in BUFR Table B and D

25

TABLE REFERENCE F X Y	TABLE REFERENCES	ELEMENT NAME	ELEMENT DESCRIPTION
		(WIGOS identifier)	
3 01 150	0 01 125	WIGOS identifier series	
	0 01 126	WIGOS issuer of identifier	
	0 01 127	WIGOS issue number	
	0 01 128	WIGOS local identifier (character)	

			BUFR				CREX	
TABLE REFERENCE F X Y	ELEMENT NAME	UNIT	SCALE	REFERENCE	DATA WIDTH (Bits)	UNIT	SCALE	DATA WIDTH (Characters)
0 01 125	WIGOS identifier series	Numeric	0	0	4	Numeric	0	2
0 01 126	WIGOS issuer of identifier	Numeric	0	0	16	Numeric	0	5
0 01 127	WIGOS issue number	Numeric	0	0	16	Numeric	0	5
0 01 128	WIGOS local identifier (character)	CCITT IA5	0	0	128	Character	0	16

JMA Workshop on the WIS implementation 2022

The draft Plan for the WIGOS Initial Operational Phase (2020-2023) was approved by INFCOM-1 in 2020

Implementation of WIGOS Station Identifiers in the WMO Information System

- Procedure to assign WSI to new stations
- BUFR/CREX encoding with WSI
- GTS message-switching
- Adaptation of users' and NWP software and systems

Proposed milestone

	A. Assign WSI	B. Encode WSI in BUFR	C. Exchange WSI BUFR on GTS	D. Software to process WSI
July 2021	Most of the Members able to assign WSI	Some Members able to encode data with WSI for new stations without a TSI	Some Members exchange WSI data on GTS	Check software can work with WSI and TSI
December 2021	All Members able to assign WSI			
July 2022		Most Members able to encode data with WSI for new stations without a TSI	Most Members exchange WSI data on GTS	NWP can use data with WSI for new stations without a TSI
December 2022		All Members able to encode data with WSI for new stations without a TSI	All Members exchange WSI data on GTS	
July 2024				All software able to process WSI

Thank you

